Relation Of Bacteria To The Dairy Industry

( Originally Published 1897 )

DAIRYING is one of the most primitive of our industries. From the very earliest period, ever since man began to keep domestic cattle, he has been familiar with dairying. During these many centuries certain methods of procedure have been developed which produce desired results. These methods, however, have been devised simply from the accumulation of experience, with very little knowledge as to the reasons underlying them. The methods of past centuries are, however, ceasing to be satisfactory. The advance of our civilization during the last half century has seen a marked expansion in the ex-tent of the dairy industry. With this expansion has appeared the necessity for new methods, and dairymen have for years been looking for them. The last few years have been teaching us that the new methods are to be found along the line of the application of the discoveries of modern bacteriology. We have been learning that the dairyman is more closely related to bacteria and their activities than almost any other class of persons. Modern dairying, apart from the matter of keeping the cow, consists largely in trying to prevent bacteria from growing in milk or in stimulating their growth in cream, butter, and cheese. These chief products of the dairy will be considered separately.


The first fact that claims our attention is, that milk at the time it is secreted from the udder of the healthy cow contains no bacteria. Although bacteria are almost ubiquitous, they are not found in the circulating fluids of healthy animals, and are not secreted by their glands. Milk when first secreted by the milk gland is therefore free from bacteria. It has taken a long time to demonstrate this fact, but it has been finally satisfactorily proved. Secondly, it has been demonstrated that practically all of the normal changes which occur in milk after its secretion are caused by the growth of bacteria. This, too, was long denied, and for quite a number of years after putrefactions and fermentations were generally acknowledged to be caused by the growth of micro-organisms, the changes which occurred in milk were excepted from the rule. The uniformity with which milk will sour, and the difficulty, or seeming impossibility, of preventing this change, led to the belief that the souring of milk was a normal change characteristic of milk, just as clotting is characteristic of blood. This was, however, eventually disproved, and it was finally demonstrated that, beyond a few physical changes connected 'with evaporation and a slight oxidation of the fat, milk, if kept free from bacteria, will undergo no change. If bacteria are not present, it will remain sweet indefinitely.

But it is impossible to draw milk from the cow in such a manner that it will be free from bacteria except by the use of precautions absolutely impracticable in ordinary dairying. As milk is commonly drawn, it is sure to be contaminated by bacteria, and by the time it has entered the milk pail it contains frequently as many as half a million, or even a million, bacteria in every cubic inch of the milk. This seems almost in-credible, but it has been demonstrated in many cases and is beyond question. Since these bacteria are not in the secreted milk, they must come from some external sources, and these sources are the following:

The first in importance is the cow herself; for while her milk when secreted is sterile, and while there are no bacteria in her blood, nevertheless the cow is the most prolific source of bacterial contamination. In the first place, the milk ducts are full of them. After each milking a little milk is always left in the duct, and this furnishes an ideal place for bacteria to grow. Some bacteria from the air or elsewhere are sure to get into these ducts after the milking, and they begin at once to multiply rapidly. By the next milking they become very abundant in the ducts, and the first milk drawn washes most of them at once into the milk pail, where they can continue their growth in the milk. Again, the exterior of the cow's body contains them in abundance. Every hair, every particle of dirt, every bit of dried manure, is a lurking place for millions of bacteria. The hind quarters of a cow are commonly in a condition of much filth, for the farmer rarely grooms his cow, and during the milking, by her movements, by the switching of her tail, and by the rubbing she gets from the milker, no inconsiderable amount of this dirt and filth is brushed off and falls into the milk pail. The farmer understands this source of dirt and usually feels it necessary to strain the milk after the milking. But the straining it receives through a coarse cloth, while it will remove the coarser particles of dirt, has no effect upon the bacteria, for these pass through any strainer unimpeded. Again, the milk vessels themselves contain bacteria, for they are never washed absolutely clean. After the most thorough washing which the milk pail receives from the kitchen, there will always be left many bacteria clinging in the cracks of the tin or in the wood, ready to begin to grow as soon as the milk once more fills the pail. The milker himself contributes to the supply, for he goes to the milking with unclean hands, unclean clothes, and not a few bacteria get from him to his milk pail. Lastly, we find the air of the milking stall furnishing its quota of milk bacteria. This source of bacteria is, however, not so great :Ls was formerly believed. That the air may contain many bacteria in its dust is certain, and doubtless these fall in some quantity into the milk, especially if the cattle are allowed to feed upon dusty hay before and during the milking. But unless the air is thus full of dust this source of bacteria is not very great, and compared with the bacteria from the other sources the air bacteria are unimportant.

The milk thus gets filled with bacteria, and since it furnishes an excellent food these bacteria begin at once to grow. The milk when drawn is warm and at a temperature which especially stimulates bacterial growth. They multiply with great rapidity, and in the course of a few hours increase perhaps a thousandfold. The numbers which may be found after twenty-four hours are sometimes inconceivable; market milk may contain as many as five hundred millions per cubic inch ; and while this is a decidedly extreme number, milk that is a day old will almost always contain many millions in each cubic inch, the number depending upon the age of the milk and its temperature. During this growth the bacteria have, of course, not been without their effect. Recognising as we do that bacteria are agents for chemical change, we are prepared to see the milk undergoing some modifications during this rapid multiplication of bacteria. The changes which these bacteria produce in the milk and its products are numerous, and decidedly affect its value. They are both advantageous and disadvantageous to the dairyman. They are nuisances so far as concerns the milk producer, but allies of the but-ter and cheese maker.

Home | More Articles | Email: