Spore Formation

( Originally Published 1897 )

In addition to their power of reproduction by simple division, many species of bacteria have a second method by means of spores. Spores are special rounded or oval bits of bacteria protoplasm capable of resisting adverse conditions which would destroy the ordinary bacteria. They arise among bacteria in two different methods.

Endogenous spores.--These spores arise inside of the rods or the spiral forms (Fig. 12). They first appear as slight granular masses, or as dark points which become gradually distinct from the rest of the rod. Eventually there is thus formed inside the rod a clear, highly refractive, spherical or oval spore, which may even be of a greater diameter than the rod producing it, thus causing it to swell out and become spindle formed (Fig. 12 c). These spores may form in the middle or at the ends of the rods (Fig. 12). They may use up all the protoplasm of the rod in their formation, or they may use only a small part of it, the rod which forms them continuing its activities in spite of the formation of the spores within it. They are always clear and highly refractive from containing little water, and they do not so readily absorb staining material as the ordinary rods. They appear to be covered with a layer of some substance which resists the stain, and which also enables them to resist various external agencies. This protective covering, together with their small amount of water, enables them to resist almost any amount of drying, a high degree of heat, and many other adverse conditions. Commonly the spores break out of the rod, and the rod producing them dies, although sometimes the rod may continue its activity even after the spores have been produced.

Arthrogenous spores(?).-Certain species of bacteria do not produce spores as just described, but may give rise to bodies that are sometimes called arthrospores. These bodies are formed as short segments of rods (Fig. 13 a). A long rod may sometimes break up into several short rounded elements, which are clear and appear to have a somewhat increased power of resisting adverse conditions. The same may happen among the spherical forms, which only in rare instances form endogenous spores.

Among the spheres which form a chain of streptococci some may occasionally be slightly different from the rest. They are a little larger, and have been thought to have an increased resisting power like that of true spores (Fig. 13 b). It is quite doubtful, however, whether it is proper to regard these bodies as spores. There is no good evidence that they have any special resisting power to heat like endogenous spores, and bacteriologists in general are inclined to regard them simply as resting cells. The term arthrospores has been given to them to indicate that they are formed as joints or segments, and this term may be a convenient one to retain although the bodies in question are not true spores.

Still a different method of spore formation occurs in a few peculiar bacteria. In this case (Fig. 14) the protoplasm in the large thread breaks into many minute spherical bodies, which finally find exit. The spores thus formed may not be all alike, differences in size being noticed. This method of spore formation occurs only in a few special forms of bacteria.

The matter of spore formation serves as one of the points for distinguishing species. Some species do not form spores, at least under any of the conditions in which they have been studied. Others form them readily in almost any condition, and others again only under special conditions which are adverse to their life. The method of spore formation is always uni-form for any single species.

Whatever be the method of the formation of the spore, its purpose in the life of the bacterium is always the same. It serves as a means of keeping the species alive under conditions of adversity. Its power of resisting heat or drying enables it to live where the ordinary active forms would be speedily killed. Some of these spores are capable of resisting a heat of 180 C. (360 F.) for a short time, and boiling water they can resist for a long time. Such spores when subsequently placed under favourable conditions will germinate and start bacterial activity anew.


Some species of bacteria have the power of active motion, and may be seen darting rapidly to and fro in the liquid in which they are growing. This motion is produced by flagella which protrude from the body. These flagella (Fig. 15) arise from a membrane surrounding the bacterium, but have an intimate connection with the proto-plasmic content. Their distribution is different in different species of bacteria. Some species have a single flagellum at one end (Fig. 15 a). Others have one at each end (Fig. 15 b). Others, again, have, at least just before dividing, a bunch at one or both ends (Fig. 15 C and D'), while others, again, have many flagella distributed all over the body in dense profusion (Fig. 15 e). These flagella keep up a lashing to and fro in the liquid, and the lashing serves to propel the bacteria through the liquid.


It is hardly possible to say much about the structure of the bacteria beyond the description of their external forms. With all the variations in detail mentioned, they are extraordinarily simple, and about all that can be seen is their external shape. Of course, they have some internal structure, but we know very little in regard to it. Some microscopists have described certain appearances which they think indicate internal structure. Fig. 16 shows some of these appearances. The matter is as yet very obscure, however.

The bacteria appear to have a membranous covering which sometimes is of a cellulose nature. Within it is protoplasm which shows various uncertain appearances. Some microscopists have thought they could find a nucleus, and have regarded bacteria as cells with inclosed nucleii (Figs. 10 a and 15 f ). Others have regarded the whole bacterium as a nucleus without any protoplasm, while others, again, have concluded that the discerned internal structure is nothing except an appearance presented by the physical arrangement of the protoplasm. While we may believe that they have some internal structure, we must recognise that as yet microscopists have not been able to make it out. In short, the bacteria after two centuries of study appear to us about as they did at first. They must still be described as minute spheres, rods, or spirals, with no further discernible structure, sometimes motile and sometimes stationary, sometimes producing spores and some-times not, and multiplying universally by binary fission. With all the development of the modern microscope we can hardly say more than this. Our advance in knowledge of bacteria is connected almost wholly with their methods of growth and the effects they produce in Nature.


There has been in the past not a little question as to whether bacteria should be rightly classed with plants or with animals. They certainly have characters which ally them with both. Their very common power of active independent motion and their common habit of living upon complex bodies for foods are animal characters, and have lent force to the suggestion that they are true animals. But their general form, their method of growth and formation of threads, and their method of spore formation are quite plant-like. Their general form is very similar to a group of low green plants known as Oscillaria.

Fig. 17 shows a group of these Oscillaria, and the similarity of this to some of the thread-like bacteria is decided. The Oscillaria are, however, true plants, and are of a green colour. Bacteria are therefore today looked upon as a low type of 'plant which has no chlorophyll, but is related to Oscillaria. The absence of the chlorophyll has forced them to adopt new relations to food, and compels them to feed upon complex foods instead of the simple ones, which form the food of green plants. We may have no hesitation, then, in calling them plants. It is interesting to notice that with this idea their place in the organic world is reduced to a small one systematically. They do not form a class by themselves, but are simply a subclass, or even a family, and a family closely related to several other common plants. But the absence of chlorophyll and the resulting peculiar life has brought about a curious anomaly. Whereas their closest allies are known only to botanists, and are of no interest outside of their systematic relations, the bacteria are familiar to every one, and are demanding the life attention of hundreds of investigators. It is their absence of chlorophyll and their consequent dependence upon complex foods which has produced this anomaly.

Home | More Articles | Email: info@oldandsold.com