Amazing articles on just about every subject...



Antitoxines

( Originally Published 1897 )

[an error occurred while processing this directive]

In very recent times, however, our bacteriologists have been pointing out to the world certain entirely new means of assisting the body to fight its battles with bacterial diseases. As already noticed, one of the primal forces in the recovery, from some diseases, at least, is the development in the body of a substance which acts as an anti-dote to the bacterial poison. So long as this antitoxine is not present the poisons produced by the disease will have their full effect to weaken the body and prevent the revival of its resisting powers to drive off the bacteria. Plainly, if it is possible to obtain this antitoxine in quantity and then inoculate it into the body when the toxic poisons are present, we have a means for decidedly assisting the body in its efforts to drive off the parasites. Such an antidote to the bacterial poison would not, indeed, produce a cure, but it would perhaps have the effect of annulling the action of the poisons, and would thus give the body a much greater chance to master the bacteria. It is upon this principle that is based the use of antitoxines in diphtheria and tetanus.

It will be clear that to obtain the antitoxine we must depend upon some natural method for its production. We do not know enough of the chemical nature of the antitoxines to manufacture them artificially. Of course we can not deny the possibility of their artificial production, and certain very recent experiments indicate that perhaps they may be made by the agency of electricity. At present, however, we must use natural methods, and the one commonly adopted is simple. Some animal is selected whose blood is harmless to man and that is subject to the disease to be treated. For diphtheria a horse is chosen. This animal is inoculated with small quantities of the diphtheria poison without the diphtheria bacillus. This poison is easily obtained by causing the diphtheria bacillus to grow in common media in the laboratory for a while, and the toxines develop in quantity; then, by proper filtration, the bacteria themselves can be removed, leaving a pure solution of the toxic poison. Small quantities of this poison are inoculated into the horse at successive intervals. The effect on the horse is the same as if the animal had the disease. Its cells react and produce a considerable quantity of the antitoxine which remains in solution in the blood of the animal. This is not theory, but demonstrated fact. The blood of a horse so treated is found to have the effect of neutralizing the diphtheria poison, al-though the blood of the horse before such treatment has no such effect. Thus there is developed in the horse's blood a quantity of the antitoxine, and now it may be used by physicians where needed. If some of this horse's blood, properly treated, be inoculated into the body of a person who is suffering from diphtheria, its effect, provided the theory of antitoxines is true, will be to counteract in part, at least, the poisons which are being produced in the patient by the diphtheria bacillus. This does not cure the disease nor in itself drive off the bacilli; but it does protect the body from the poisons to such an extent as to enable it more readily to assert its own resisting powers.

This method of using antitoxines as a help in curing disease is very recent, and we can not even guess what may come of it. It has apparently been successfully applied in diphtheria. It has also been used in tetanus with slight success. The same principle has been used in obtaining an antidote for the poison of snake bites, since it has appeared that in this kind of poisoning the body will develop an antidote to the poison if it gets a chance. Horses have been treated in the same way as with the diphtheria poison, and in the same way they develop a substance which neutralizes the snake poison. Other diseases are being studied to-day with the hope of similar results. How much further the principle will go we can not say, nor can we be very confident that the same principle will apply very widely. The parasitic diseases are so different in nature that we can hardly expect that a method which is satisfactory in meeting one of the diseases will be very likely to be adapted to another. Vaccination has proved of value in smallpox, but is not of use in other human diseases. Inoculation with weakened germs has proved of value in anthrax and fowl cholera, but will not apply to all diseases. Each of these parasites must be fought by special methods, and we must not expect that a method that is of value in one case must necessarily be of use elsewhere. Above all, we must remember that the antitoxines do not cure in themselves; they only guard the body from the weakening effects of the poisons until it can cure itself, and, unless the body has resisting powers, the antitoxin will fail to produce the desired results.

One further point in the action of the antitoxines must be noticed. As we have seen, a recovery from an attack of most germ diseases renders the individual for a time immune against a second attack. This applies less, however, to a recovery after the artificial inoculation with antitoxines than when the individual recovers without such aid. If the individual recovers quite independently of the artificial antitoxine, he does so in part because he has developed the antitoxines for counteracting the poison by his own powers. His cellular activities have, in other words, been for a moment at least turned in the direction of production of antitoxines. It is to be expected, therefore, that after the recovery they will still have this power, and so long as they possess it the individual will have protection from a second attack. When, however, the recovery results from the artificial inoculation of antitoxine the body cells have not actively produced antitoxine. The neutralization of the poisons has been a passive one, and after recovery the body cells are no more engaged in producing antitoxine than be fore. The antitoxine which was inoculated is soon eliminated by secretion, and the body is left with practically the same liability to attach as before. Its immunity is decidedly fleeting, since it was dependent not upon any activity on the part of the body, but upon an artificial inoculation of a material which is rapidly eliminated by secretion.



Home | More Articles | Email: info@oldandsold.com