Amazing articles on just about every subject...

Curative Medicine

( Originally Published 1897 )

Bacteriology has hitherto contributed less to curative than to preventive medicine. Nevertheless, its contributions to curative medicine have not been unimportant, and there is promise of much more in the future. It is, of course, unsafe to make predictions for the future, but the accomplishments of the last few years give much hope as to further results.


It was at first thought that a knowledge of the specific bacteria which cause a disease would give a ready means of finding specific drugs for the cure of such disease. If a definite species of bacterium causes a disease and we can cultivate the organism in the laboratory, it is easy to find some drugs which will be fatal to its growth, and these same drugs, it would seem, should be valuable as medicines in these diseases. This hope has, however, proved largely illusive. It is very easy to find some drug which proves fatal to the specific germs while growing in the culture media of the laboratory, but commonly these are of little or no use when applied as medicines. In the first place, such substances are usually very deadly poi-sons. Corrosive sublimate is a substance which destroys all pathogenic germs with great rapidity, but it is a deadly poison, and can not be used as a drug in sufficient quantity to destroy the parasitic bacteria in the body without at the same time producing poisonous effects on the body itself. It is evident that for any drug to be of value in thus destroying bacteria it must have some specially strong action upon the bacteria. Its germicide action on the bacteria should be so strong that a dose which would be fatal or very injurious to them would be too small to have a deleterious influence on the body of the individual. It has not proved an easy task to discover drugs which will have any value as germicides when used in quantities so small as to produce no injurious effect on the body.

A second difficulty is in getting the drug to produce its effect at the right point. A few diseases, as we have noticed, are produced by bacteria which distribute themselves almost indiscriminately over the body ; but the majority are somewhat definitely localized in special points. Tuberculosis may attack a single gland or a single lobe of the lung. Typhoid germ is localized in the intestines, liver, spleen, etc. Even if it were possible to find some drug which would have a very specific effect upon the tuberculosis bacillus, it is plain that it would be a very questionable method of procedure to introduce this into the whole system simply that it might have an effect upon a very small isolated gland. Sometimes such a bacterial affection may be localized in places where it can be specially treated, as in the case of an attack on a dermal gland, and in these cases some of the germicides have proved to be of much value. Indeed, the use of various disinfectants connected with abscesses and superficial infections has proved of much value. To this extent, in disinfecting wounds and as a local application, the development of our knowledge of disinfectants has given no little aid to curative medicine.

Very little success, however, has resulted in the attempt to find specific drugs for specific diseases, and it is at least doubtful whether many such will ever be found. The nearest approach to it is quinine as a specific poison for malarial troubles. Malarious diseases are not, however, produced by bacteria but by a microscopic organism of a very different nature, thought to be an animal rather than a plant. Besides this there has been little or no success in discovering specifics in the form of drugs which can be given as medicines or inoculated with the hope of destroying special kinds of pathogenic bacteria without injury to the body. While it is unwise to make predictions as to future discoveries, there seems at present little hope for a development of curative medicine along these lines.


The study of bacterial diseases as they progress in the body has emphasized above all things the fact that diseases are eventually cured by a natural rather than by an artificial process. If a pathogenic bacterium succeeds in passing the outer safeguards and entering the body, and if it then succeeds in overcoming the forces of resistance which we have already noticed, it will begin to multiply and produce mischief. This multiplication now goes on for a time unchecked, and there is little reason to expect that we can ever do much toward checking it by means of drugs. But after a little, conditions arise which are hostile to the further growth of the parasite. These hostile conditions are produced perhaps in part by the secretions from the bacteria, for bacteria are unable to flourish in a medium containing much of their own secretions. The secretions which they produce are poisons to them as well as to the individual in which they grow, and after these have become quite abundant the further growth of the bacterium is checked and finally stopped. Partly, also, must we conclude that these hostile conditions are produced by active vital powers in the body of the individual attacked. The individual, as we have seen, in some cases develops a quantity of some substance which neutralizes the bacterial poisons and thus prevents their having their maximum effect. Thus relieved from the direct effects of the poisons, the resisting powers are recuperated and once more begin to produce a direct destruction of the bacteria. Possibly the bacteria, being now weakened by the presence of their own products of growth, more readily yield to the resisting forces of the cell life of the body. Possibly the resisting forces are decidedly increased by the reactive effect of the bacteria and their poisons. But, at all events, in cases where recovery from parasitic diseases occurs, the revived powers of resistance finally overcome the bacteria, destroy them or drive them off, and the body recovers.

All this is, of course, a natural process. The recovery from a disease produced by the invasion of parasitic bacteria depends upon whether the body can resist the bacterial poisons long enough for the recuperation of its resisting powers. If these poisons are very violent and produced rap-idly, death will probably occur before the resisting powers are strong enough to drive off the bacteria. In the case of some diseases the poisons are so violent that this practically always occurs, recovery being very exceptional. The poison produced by the tetanus bacillus is of this nature, and recovery from lockjaw is of the rarest occurrence. But in many other diseases the body is able to with-stand the poison, and later to recover its resisting powers sufficiently to drive off the invaders. In all cases, however, the process is a natural one and dependent upon the vital activity of the body. It is based at the foundation, doubtless, upon the powers of the body cells, either the phagocytes or other active cells. The body has, in short, its own forces for repelling invasions, and upon these forces must we depend for the power to produce recovery.

It is evident that all these facts give us very little encouragement that we shall ever be able to cure diseases directly by means of drugs to destroy bacteria, but, on the contrary, that we must ever depend upon the resisting powers of the body. They teach us, moreover, along what line we must look for the future development of curative medicine. It is evident that scientific medicine must turn its attention toward the strengthening and stimulating of the resisting and curative forces of the body. It must be the physician's aim to enable the body to resist the poisons as well as possible and to stimulate it to re-enforce its resistant forces. Drugs have a place in medicine, of course, but this place is chiefly to stimulate the body to react against its invading hosts. They are, as a rule, not specific against definite diseases. We can not hope for much in the way of discovering special' medicines adapted to special diseases. We must simply look upon them as means which the physician has in hand for stimulating the natural forces of the body, and these may doubtless vary with different individual natures. Recognising this, we can see also the logic of the small dose as compared to the large dose. A small dose of a drug may serve as a stimulant for the lagging forces, while a larger dose would directly repress them or produce injurious secondary effects. As soon as we recognise that the aim of medicine is not to destroy the disease but rather to stimulate the resisting forces of the body, the whole logic of therapeutics assumes a new aspect.

Physicians have understood this, and, especially in recent years, have guided their practice by it. If a moderate dose of quinine will check malaria in a few days, it does not follow that twice the dose will do it in half the time or with twice the certainty. The larger doses of the past, intended to drive out the disease, have been everywhere replaced by smaller doses designed to stimulate the lagging body powers. The mod-ern physician makes no attempt to cure typhoid fever, having long since learned his inability to do this, at least if the fever once gets a foothold ; but he turns his attention to every conceivable means of increasing the body's strength to resist the typhoid poison, confident that if he can thus enable the patient to resist the poisoning effects of the typhotoxine his patient will in the end re-act against the disease and drive off the invading bacteria. The physician's duty is to watch and guard, but he must depend upon the vital powers of his patient to carry on alone the actual battle with the bacterial invaders.

Home | More Articles | Email: