Amazing articles on just about every subject...

Methods Of Combating Parasitic Bacteria

( Originally Published 1897 )

THE chief advantage of knowing the cause of disease is that it gives us a vantage ground from which we may hope to find means of avoiding its evils. The study of medicine in the past history of the world has been almost purely empirical, with a very little of scientific basis. Great hopes are now entertained that these new facts will place this matter upon a more strictly scientific foundation. Certainly in the past twenty-five years, since bacteriology has been studied, more has been done to solve problems connected with disease than ever before. This new knowledge has been particularly directed toward means of avoiding disease. Bacteriology has thus far borne fruit largely in the line of preventive medicine, although to a certain extent also along the line of curative medicine. This chapter will be de-voted to considering how the study of bacteriology has contributed directly and indirectly to our power of combating disease.


In the study of medicine in the past centuries the only aim has been to discover methods of curing disease ; at the present time a large and increasing amount of study is devoted to the methods of preventing disease. Preventive medicine is a development of the last few years, and is based almost wholly upon our knowledge of bacteria. This subject is yearly becoming of more importance. Forewarned is forearmed, and it has been found that to know the cause of a disease is a long step toward avoiding it. As some of our contagious and epidemic diseases have been studied in the light of bacteriological knowledge, it has been found possible to deter-mine not only their cause, but also how infection is brought about, and consequently how contagion may be avoided. Some of the results which have grown up so slowly as to he hardly appreciated are really great triumphs. For instance, the study of bacteriology first led us to suspect, and then demonstrated, that tuberculosis is a contagious disease, and from the time that this was thus proved there has been a slow, but, it is hoped, a sure decline in this disease. Bacteriological study has shown that the source of cholera infection in cases of raging epidemics is, in large part at least, our drinking water; and since this has been known, although cholera has twice invaded Europe, and has been widely distributed, it has not obtained any strong foothold or given rise to any serious epidemic except in a few cases where its ravages can be traced to recognised carelessness. It is very significant to compare the history of the cholera epidemics of the past few years with those of earlier dates. In the epidemics of earlier years the cholera swept ruthlessly through communities without check. In the last few years, although it has repeatedly knocked at the doors of many European cities, it has been commonly confined to isolated cases, except in a few instances where these facts concerning the relation to drinking water were ignored.

The study of preventive medicine is yet in its infancy, but it has already accomplished much. It has developed modern systems of sanitation, has guided us in the building of hospitals, given rules for the management of the sick-room which largely prevent contagion from patient to nurse; it has told us what diseases are contagious, and in what way ; it has told us what sources of contagion should be suspected and guarded against, and has thus done very much to prevent the spread of disease. Its value is seen in the fact that there has been a constant decrease in the death rate since modern ideas of sanitation began to have any influence, and in the fact that our general epidemics are less severe than in former years, as well as in the fact that more people escape the diseases which were in former times almost universal.

The study of preventive medicine takes into view several factors, all connected with the method and means of contagion. They are the following:

The Source of Infectious Material.—It has been learned that for most diseases the infectious material comes from individuals suffering with the disease, and that except in a few cases, like malaria, we must always look to individuals suffering from disease for all sources of contagion. It is found that pathogenic bacteria are in all these cases eliminated from the patient in some way, either from the alimentary canal or from skin secretions or otherwise, and that any nurse with common sense can have no difficulty in deter-mining in what way the infectious material is eliminated from her patients. When this fact is known and taken into consideration it is a comparatively easy matter to devise valuable precautions against distribution of such material. It is thus of no small importance to remember that the simple presence of bacteria in food or drink is of no significance unless these bacteria have come from some source of disease infection.

The Method of Distribution.—The bacteria must next get from the original source of the disease to the new susceptible individual. Bacteria have no independent powers of distribution unless they be immersed in liquids, and therefore their pas-sage from individual to individual must be a passive one. They are readily transferred, however, by a number of different means, and the study of these means is aiding much in checking contagion Study along this line has shown that the means by which bacteria are carried are several. First we may notice food as a distributor. Food may become contaminated by infectious material in many ways; for example, by contact with sewage, or with polluted water, or even with eating utensils which have been used by patients. Water is also likely to be contaminated with infectious material, and is a fertile source for distributing typhoid and cholera. Milk may become contaminated in a variety of ways, and be a source of distributing the bacteria which produce typhoid fever, tuberculosis, diphtheria, scarlet fever, and a few other less common diseases. Again, infected clothing, bedding, or eating utensils may be taken from a patient and be used by another individual without proper cleansing. Direct con-tact, or contact with infected animals, furnishes another method. Insects sometimes carry the bacteria from person to person, and in some diseases (tuberculosis, and perhaps scarlet fever and smallpox) we must look to the air as a distributor of the infectious material. Knowledge of these facts is helping to account for multitudes of mysterious cases of infection, especially when we combine them with the known sources of contagious matter.

Means of Invasion.—Bacteriology has shown us that different species of parasitic bacteria have different means of entering the body, and that each must enter the proper place in order to get a foothold. After we learn that typhoid infectious material must enter the mouth in order to produce the disease; that tuberculosis may find entrance through the nose in breathing, while types of blood poisoning enter only through wounds or broken skin, we learn at once fundamental facts as to the proper methods of meeting these dangers. We learn that with some diseases care exercised to prevent the swallowing of infectious material is sufficient to prevent contagion, while with others this is entirely insufficient. When all these facts are understood it is almost always perfectly possible to avoid contagion ; and as these facts become more and more widely known direct contagion is sure to become less frequent.

Above all, it is telling as what becomes of the pathogenic bacteria after being eliminated from the body of the patient ; how they may exist for a long time still active ; how they may lurk in filth or water dormant but alive, or how they may even multiply there. Preventive medicine is telling us how to destroy those thus lying in wait for a chance of infection, by discovering disinfect-ants and telling us especially where and when to use them. It has already taught us how to crush out certain forms of epidemics by the proper means of destroying bacteria, and is lessening the dangers from contagious diseases. In short, the study of bacteriology has brought us into a condition where we are no longer helpless in the presence of a raging epidemic. We no longer sit in helpless dismay, as did our ancestors, when an epidemic enters a community, but, knowing their causes and sources, set about at once to remove them. As a result, severe epidemics are becoming comparatively short-lived.

Home | More Articles | Email: