Recovery From Germ Diseases

( Originally Published 1897 )

These resisting forces are not always sufficient to drive off the invaders. The organisms may retain their hold in the body for a time and eventually break down the resistance. After this they may multiply unimpeded and take entire possession of the body. As they become more numerous their poisonous products increase and begin to produce direct poisoning effects on the body. The incubation period is over and the disease comes on. The disease now runs its course. It becomes commonly more and more severe until a crisis is reached. Then, unless the poisoning is so severe that death occurs, the effects pass away and recovery takes place.

But why should not a germ disease be always fatal ? If the bacteria thus take possession of the body and can grow there, why do they not always continue to multiply until they produce sufficient poison to destroy the life of the individual ? Such fatal results do, of course, occur, but in by far the larger proportion of cases recovery finally takes place.

Plainly, the body must have another set of resisting forces which is concerned in the final recovery. Although weakened by the poisoning and suffering from the disease, it does not yield the battle, but somewhat slowly organizes a new attack upon the invaders. For a time the multi-plying bacteria have an unimpeded course and grow rapidly; but finally their further increase is checked, their vigour impaired, and after this they diminish in numbers and are finally expelled from the body entirely. Of the nature of this new resistance but little is yet known. We notice, in the first place, that commonly after such a recovery the individual has decidedly increased resistance to the disease. This increased resistance may be very lasting, and may be so considerable as to give almost complete immunity from the disease for many years, or for life. One attack of scarlet fever gives the individual great immunity for the future. On the other hand, the resistance thus derived may be very temporary, as in the case of diphtheria. But a certain amount of resistance appears to be always acquired. This power of resisting the activities of the parasites seems to be increased during the progress of the disease, and, if it becomes sufficient, it finally drives off the bacteria before they have produced death. After this, recovery takes place. To what this newly acquired resisting power is due is by no means clear to bacteriologists, although certain factors are already known. It appears beyond question that in the case of certain diseases the cells of the body after a time produce substances which serve as antidotes to the poisons produced by the bacteria during their growth in the body—antitoxins. In the case of diphtheria, for instance, the germs growing in the throat produce poisons which are absorbed by the body and give rise to the symptoms of the disease; but after a time the body cells react, and themselves produce a counter toxic body which neutralizes the poisonous effect of the diphtheria poison. This substance has been isolated from the blood of animals that have recovered from an attack of diphtheria, and has been called diphtheria antitoxine. But even with this knowledge the recovery is not fully explained. This antitoxine neutralizes the effects of the diphtheria toxine, and then the body develops strength to drive off the bacteria which have obtained lodgment in the throat. How they accomplish this latter achievement we do not know as yet. The antitoxine developed simply neutralizes the effects of the toxine. Some other force must be at work to get rid of the bacteria, a force which can only exert itself after the poisoning effect of the poison is neutralized. In these cases, then, the recovery is due, first, to the development in the body of the natural antidotes to the toxic poisons, and, second, to some other unknown force which drives off the parasites.

These facts are certainly surprising. If one had been asked to suggest the least likely theory to explain recovery from disease, he could hardly have found one more unlikely than that the body cells developed during the disease an antidote to the poison which the disease bacteria were producing. Nevertheless, it is beyond question that such antidotes are formed during the course of the germ diseases. It has not yet been shown in all diseases, and it would be entirely too much to claim that this is the method of recovery in all cases. We may say, however, in regard to bacterial diseases in general, that after the bacteria en-ter the body at some weak point they have first a battle to fight with the resisting powers of the body, which appear to be partly biological and partly chemical. These resisting powers are in many cases entirely sufficient to prevent the bacteria from obtaining a foothold. If the invading host overcome the resisting powers, then they begin to multiply rapidly, and take possession of the body or some part of it. They continue to grow until either the individual dies or something occurs to check their growth. After the individual develops the renewed powers of checking their growth, recovery takes place, and the individual is then, because of these renewed powers of resistance, immune from a second attack of the disease for a variable length of time.

This, in the merest outline, represents the relation of bacterial parasites to the human body. But while this is a fair general expression of the matter, it must be recognised that different diseases differ much in their relations, and no general outline will apply to all. They differ in their method of attack and in the point of attack. Not only do they produce different kinds of poisons giving rise to different symptoms of poisoning; not only do they produce different results in different animals ; not only do the different pathogenic species differ much in their power to develop serious disease, but the different species are very particular as to what species of animal they attack. Some of them can live as parasites in man alone; some can live as parasites upon man and the mouse and a few other animals; some can live in various animals but not in man ; some appear to be able to live in the field mouse, but not in the common mouse; some live in the horse; some in birds, but not in warm-blooded mammals ; while others, again, can live almost equally well in the tissues of a long list of animals. Those which can live as parasites upon man are, of course, especially related to human disease, and are of particular interest to the physician, while those which live in animals are in a similar way of interest to veterinarians.

Thus we see that parasitic bacteria show the widest variations. They differ in point of attack, in method of attack, and in the part of the body which they seize upon as a nucleus for growth. They differ in violence and in the character of the poisons they produce, as well as in their power of overcoming the resisting powers of the body. They differ at different times in their powers of producing disease. In short, they show such a large number of different methods of action that no general statements can be made which will apply universally, and no one method of guarding against them or in driving them off can be hoped to apply to any extended list of diseases.

Home | More Articles | Email: