Amazing articles on just about every subject...

Elementary Magnetism

( Originally Published 1905 )


WE have no reason to believe that the sheep or the dog, or indeed any of the lower animals, feel an interest in the laws by which natural phenomena are regulated. A herd may be terrified by a thunderstorm; birds may go to roost, and cattle return to their stalls, during a solar eclipse; but neither birds nor cattle, as far as we know, ever think of inquiring into the causes of these things. It is otherwise with man. The presence of natural objects, the occurrence of natural events, the varied appearances of the universe in which he dwells penetrate beyond his organs of sense, and appeal to an inner power of which the senses are the mere instruments and excitants. No fact is to him either original or final. He cannot limit himself to the contemplation of it alone, but endeavors to ascertain its position in a series to which uniform experience assures him it must belong. He regards all that he witnesses in the present as the efflux and sequence of something that has gone before, and as the source of a system of events which is to follow. The notion of spontaneity, by which in his ruder state he accounted for natural events, is abandoned; the idea that nature is an aggregate of independent parts also disappears, as the connection and mutual dependence of physical powers become more and more manifest: until he is finally led to regard Nature as an organic whole—as a body each of whose members sympathizes with the rest, changing, it is true, from age to age, but changing with-out break of continuity in the relation of cause and effect.

The system of things which we call Nature is, how-ever, too vast and various to be studied first-hand by any single mind. As knowledge extends there is always a tendency to subdivide the field of investigation. Its various parts are taken up by different minds, and thus receive a greater amount of attention than could possibly be bestowed on them if each investigator aimed at the mastery of the whole. The centrifugal form in which knowledge, as a whole, advances, spreading ever wider on all sides, is due in reality to the exertions of individuals, each of whom directs his efforts, more or less, along a single line. Accepting, in many respects, his culture from his fellow-men —taking it from spoken words or from written books—in some one direction, the student of Nature ought actually to touch his work. He may otherwise be a distributor of knowledge, but not a creator, and he fails to attain that vitality of thought and correctness of judgment which direct and habitual contact with natural truth can alone impart.

One large department of the system of Nature which forms the chief subject of my own studies, and to which it is my duty to call' your attention this evening, is that of physics, or natural philosophy. This term is large enough to cover the study of Nature generally, but it is usually restricted to a department which, perhaps, lies closer to our perceptions than any other. It deals with the phenomena and laws of light and heat—with the phenomena and laws of magnetism and electricity—with those of sound—with the pressures and motions of liquids and gases, whether at rest or in a state of translation or of undulation. The science of mechanics is a portion of natural philosophy, though at present so large as to need the exclusive attention of him who would cultivate it profoundly. Astronomy is the application of physics to the motions of the heavenly bodies, the vastness of the field causing it, however, to be regarded as a department in itself. In chemistry physical agents play important parts. By heat and light we cause atoms and molecules to unite or to fall asunder. Electricity exerts a similar power. Through their ability to separate nutritive compounds into their constituents, the solar beams build up the whole vegetable world, and by it the animal world. The touch of the self-same beams causes hydrogen and chlorine to unite with sudden explosion, and to form by their combination a powerful acid. Thus physics and chemistry intermingle. Physical agents are, however, employed by the chemist as a means to an end ; while in physics proper the laws and phenomena of the agents themselves, both qualitative and quantitative, are the primary objects of attention.

My duty here tonight is to spend an hour in telling how this subject is to be studied, and how a knowledge of it is to be imparted to others. From the domain of physics, which would be unmanageable as a whole, I select as a sample the subject of magnetism. I might readily entertain you on the present occasion with an account of what natural philosophy has accomplished. I might point to those applications of science of which we hear so much in the newspapers, and which are so often mistaken for science itself. I might, of course, ring changes on the steam-engine and the telegraph, the electrotype and the photograph, the medical applications of physics, and the various other inlets by which scientific thought filters into practical life.. That would be easy compared with the task of informing you how you are to make the study of physics the instrument of your pupil's culture; how you are to possess its facts and make them living seeds which shall take root and grow in the mind, and not lie like dead lumber in the storehouse of memory. This is a task much heavier than the mere recounting of scientific achievements; and it is one which, feeling my own want of time to execute it aright, I might well hesitate to accept.

But let me sink excuses, and attack the work before me. First and foremost, then, I would advise you to get a knowledge of facts from actual observation. Facts looked at directly are vital; when they pass into words half the sap is taken out of them. You wish, for example, to get a knowledge of magnetism; well, provide your-self with a good book on the subject, if you can, but do not be content with what the book tells you; do not be satisfied with its descriptive woodcuts; see the operations of the force yourself. Half of our book writers describe experiments which they never made, and their descriptions often lack both force and truth; but, no matter how clever or conscientious they may be, their written words cannot supply the place of actual observation. Every fact has numerous radiations, which are shorn off by the man who describes it. Go, then, to a philosophical instrument maker, and give a shilling or half a crown for a straight bar-magnet, or, if you can afford it, purchase a pair of them; or get a smith to cut a length of ten inches from a bar of steel an inch wide and half an inch thick; file its ends smoothly, harden it, and get somebody like my-self to magnetize it. Procure some darning needles, and also a little unspun silk, which will give you a suspending fibre void of torsion. Make a little loop of paper, or of wire, and attach your fibre to it. Do it neatly. In the loop place a -darning-needle, and bring the two ends or poles, as they are called, of your bar-magnet successively up to the ends of the needle. Both the poles, you find, attract both ends of the needle. Replace the needle by a bit of annealed iron wire; the same effects ensue. Suspend successively little rods of lead, copper, silver, brass, wood, glass, ivory, or whalebone; the magnet produces no sensible effect upon any of the substances. You thence infer a special property in the case of steel and iron. Multiply your experiments, however, and you will find that some other substances, besides iron and steel, are acted upon by your magnet. A rod of the metal nickel, or of the metal cobalt, from which the blue color used by painters is derived, exhibits powers similar to those observed with the iron and steel.

In studying the character of the force you may, how-ever, confine yourself to iron and steel, which are always at hand. Make your experiments with the darning-needle over and over again; operate on both ends of the needle; try both ends of the magnet. Do not think the work dull; you are conversing with Nature, and must acquire over her language a certain grace and mastery, which practice can alone impart. Let every movement be made with care, and avoid slovenliness from the outset. Experiment, as I have said, is the language by which we address Nature, and through which she sends her replies; in the use of this language a lack of straightforwardness is as possible, and as prejudicial, as in the spoken language of the tongue. If, therefore, you wish to become acquainted with the truth of Nature, you must from .the first resolve to deal with her sincerely.

Now remove your needle from its loop, and draw it, from eye to point, along one of the ends of the magnet; resuspend it, and repeat your former experiment. You now find that each extremity of the magnet attracts one end of the needle and repels the other. The simple at-traction observed in the ' first instance is now replaced by a dual force. Repeat the experiment till you have thoroughly observed the ends which attract and those which repel each other.

Withdraw the magnet entirely from the vicinity of your needle, and leave the latter freely suspended by its fibre. Shelter it as well as you can from currents of air, and if you have iron buttons on your coat, or a steel penknife in your pocket, beware of their action. If you work at night, beware of iron candlesticks, or of brass ones. with iron rods inside. Freed from such disturbances, the needle takes up a certain determinate position. It sets its length nearly north and south. Draw it aside and let it go. After several oscillations it will again come to the same position. If you have obtained your magnet from a philosophical instrument maker, you will see a mark on one of its ends. Supposing, then, that you drew your needle along the end thus marked, and that the point of your needle was the last to quit the magnet, you will find that the point turns to the south, the eye of the needle turning toward the north. Make sure of this, and do not take the statement on my authority.

Now, take a second darning-needle like the first, and magnetize it in precisely the same manner: freely suspended it also will turn its eye to the north and its point to the south. Your next step is to examine the action of the two needles, which you have thus magnetized, upon each other.

Take one of them in your hand, and leave the other suspended; bring the eye-end of the former near the eye-end of the latter; the suspended needle retreats: it is repelled. Make the same experiment with the two points; you obtain the same result, the suspended needle is repelled. Now cause the dissimilar ends to act on each other—you have attraction—point attracts eye, and eye attracts point. Prove the reciprocity of this action by removing the suspended needle, and putting the other in its place. You obtain the same result. The attraction, then, is mutual, and the repulsion is mutual. You have thus demonstrated in the clearest manner the fundamental law of magnetism, that like poles repel, and that unlike poles attract, each other. You may say that this is all easily understood without doing; but do it, and your knowledge will not be confined to what I have uttered here.

I have said that one end of your bar-magnet has a mark upon it; lay several silk fibres together, so as to get sufficient strength, or employ a thin silk ribbon, and form a loop large enough to hold your magnet. Suspend it; it turns its marked end toward the north. This marked end is that which in England is called the north pole. If a common smith has made your magnet, it will be convenient to determine its north pole yourself, and to mark it with a file. Vary your experiments by causing your magnetized darning-needle to attract and repel your large magnet; it is quite competent to do so. In magnetizing the needle, I have supposed the point to be the last to quit the marked end of the magnet; the point of the needle is a south pole. The end which last quits the magnet is always opposed in polarity to the end of the magnet with which it has been last in contact.

You may perhaps learn all this in a single hour; but spend several at it, if necessary; and remember, under-standing it is not sufficient: you must obtain a manual aptitude in addressing Nature. If you speak to your fellow-man you are not entitled to use jargon. Bad experiments are jargon addressed to Nature, and just as much to be deprecated. Manual dexterity in illustrating the interaction of magnetic poles is of the utmost importance at this stage of your progress; and you must not neglect attaining this power over your implements. As you proceed, moreover, you will be tempted to do more than I can possibly suggest. Thoughts will occur to you which you will. endeavor to follow out: questions will arise which you will try to answer. The same experiment may be twenty different things to twenty people. Having witnessed the action of pole on pole, through the air, you will perhaps try whether the magnetic power is not to be screened off. You use plates of glass, wood, slate, paste-board, or gutta-percha, but find them all pervious to this wondrous force. One magnetic pole acts upon another through these bodies as if they were not present. Should you ever become a patentee for the regulation of ships' compasses, you will not fall, as some projectors have done, into the error of screening off the magnetism of the ship by the interposition of such substances.

If you wish to teach a class you must contrive that the effects which you have thus far witnessed for yourself shall be witnessed by twenty or thirty pupils. And here your private ingenuity must come into play. You will attach bits of paper to your needles, so as to render their movements visible at a distance, denoting the north and south poles by different colors, say green and red. You may also improve upon your darning-needle. Take a strip of sheet steel, heat it to vivid redness and plunge it into cold water. It is thereby hardened; rendered, in fact, almost as brittle as glass. Six inches of this, magnetized in the manner of the darning-needle, will be better able to carry your paper indexes. Having secured such a strip, you proceed thus:

Magnetize a small sewing-needle and determine its poles; or, break half an inch, or an inch, off your magnetized darning-needle and suspend it by a fine silk fibre. The sewing-needle, or the fragment of the darning needle, is now to be used as a test-needle, to examine the distribution of the magnetism in your strip of steel. Hold the strip upright in your left hand, and cause the test-needle to approach the lower end of your strip; one end of the test-needle is attracted, the other is repelled. Raise your needle along the strip; its oscillations, which at first were quick, become slower; opposite the middle of the strip they cease entirely; neither end of the needle is attracted; above the middle the test-needle turns suddenly round, its other end being now attracted. Go through the experiment thoroughly: you thus learn that the entire lower half of the strip attracts one end of the needle, while the entire upper half attracts the opposite end. Supposing the north end of your little needle to be that attracted below, you infer that the entire lower half of your magnetized strip exhibits south magnetism, while the entire upper half exhibits north magnetism. So far, then, you have determined the distribution of magnetism in your strip of steel.

You look at this fact, you think of it; in its suggestiveness the value of an experiment chiefly consists. The thought naturally arises: "What will occur if I break my strip of steel across in the middle? Shall I obtain two -magnets each possessing a single pole?" Try the experiment; break your strip of steel, and test each half as you tested the whole. The mere presentation of its two ends in succession to your test-needle suffices to show that you have not a magnet with a single pole—that each half possesses two poles with a neutral point between them. And if you again break the half into two other halves, you will find that each quarter of the original strip exhibits precisely the same magnetic distribution as the whole strip. You may continue the breaking process : no mat-ter how small your fragment may be, it still possesses two opposite poles and a neutral point between them. Well, your hand ceases to break where breaking becomes a mechanical impossibility; but does the mind stop there? No: you follow the breaking process in idea when you can no longer realize it in fact; your thoughts wander amid the very atoms of your steel, and you conclude that each atom is a magnet, and that the force exerted by the strip of steel is the mere summation, or resultant, of the forces of its ultimate particles.

Here, then, is an exhibition of power which we can call forth at pleasure or cause to disappear. We magnetize our strip of steel by drawing it along the pole of a magnet; we can demagnetize it, or reverse its magnetism, by properly drawing it along the same pole in the opposite direction. What, then, is the real nature of this wondrous change? What is it that takes place among the atoms of the steel when the substance is magnetized? The question leads us beyond the region of sense, and into that of. imagination. This faculty, indeed, is the divining-rod of the man of science. Not, however, an imagination which catches its creations from the air, but one informed and. inspired by facts; capable of seizing firmly on a physical image as a principle, of discerning its consequences, and of devising means whereby these forecasts of thought may be brought to an experimental test. If such a principle be adequate to account for .all the phenomena—if, from an assumed cause, the observed acts necessarily follow, we call the assumption a theory, and, once possessing it, we can not only revive at pleasure facts already known, but we can predict others which we have never seen. Thus, then, in the prosecution of physical science, our powers of observation, memory, imagination, and inference, are all drawn upon. We observe facts and store them up; the constructive . imagination broods upon these memories, tries to discern their inter-dependence and weave them to an organic whole. The theoretic principle flashes or slowly dawns upon the mind; and then the deductive faculty interposes to carry out the principle to its logical consequences. A perfect theory gives dominion over natural facts; and even an assumption which can only partially stand the test of a comparison with facts may be of eminent use in enabling us to connect and classify groups of phenomena. The theory of magnetic fluids is of this latter character, and with it we must now make ourselves familiar.

With the view of stamping the thing more firmly on your minds, I will make use of a strong and vivid image. In optics, red and green are called complementary colors; their mixture produces white. Now I ask you to imagine each of these colors to possess a self-repulsive power; that red repels red, that green repels green ; but that red at-tracts green and green attracts red, the attraction of the dissimilar colors being equal to the repulsion of the similar ones. Imagine the two colors mixed so as to produce white, and suppose two strips of wood painted with this white; what will be their action upon each other? Suspend one of them freely as we suspended our darning-needle, and bring the other near it; what will occur? The red component of the strip you hold in your hand will repel the red component of your suspended strip; but then it will attract the green, and, the forces being equal, they neutralize each other. In fact, the least reflection shows you that the strips will be as indifferent to each other as two unmagnetized darning-needles would be under the same circumstances.

But suppose, instead of mixing the colors, we painted one half of each strip from centre to end red, and the other half green, it is perfectly manifest that the two strips would now behave toward each other exactly as our two magnetized darning-needles—the red end would repel the red and attract the green, the green would repel the green and attract the red; so that, assuming two col-ors thus related to each other, we could by their mixture produce the neutrality of an unmagnetized body, while by their separation we could produce the duality of action of magnetized bodies.

But you have already anticipated a defect in my conception; for if we break one of our strips of wood in the middle we have one half entirely red, and the other entirely green, and with these it would be impossible to imitate the action of our broken magnet. How, then, must we modify our conception? We must evidently sup-pose each molecule of the wood painted green on one face and red on the opposite one. The resultant action of all the atoms would then exactly resemble the action of a magnet. Here also, if the two opposite colors of each atom could be caused to mix so as to produce white, we should have, as before, perfect neutrality.

For these two self-repellent and mutually attractive colors substitute in your minds two invisible self-repellent and mutually attractive fluids, which in ordinary steel are mixed to form a neutral compound, but which the act of magnetization separates from each other, placing the opposite fluids on the opposite face of each molecule. You have then a perfectly distinct conception of the celebrated theory of magnetic fluids. The strength of the magnetism excited is supposed to be proportional to the quantity of neutral fluid decomposed. According to this theory nothing is actually transferred from the exciting magnet to the excited steel. The act of magnetization consists in the forcible separation of two fluids which existed in the steel before it was magnetized, but which then neutralized each other by their coalescence. And if you test your magnet, after it has excited a hundred pieces of steel, you will find that it has lost no force —no more, indeed, than I should lose, had my words such a magnetic influence on your minds as to excite in them a strong resolve to study natural philosophy. I should rather be the gainer by my own utterance, and by the reaction of your fervor. The magnet also is the gainer by the reaction of the body which it magnetizes.

Look now to your excited piece of steel; figure each molecule with its opposed fluids spread over its opposite faces. How can this state of things be permanent? The fluids, by hypothesis, attract each other; what, then, keeps them apart? Why do they not instantly rush together across the equator of the atom, and thus neutralize each other? To meet this question, philosophers have been obliged to infer the existence of a special force, which holds the fluids asunder. They call it coercive force; and it is found that those kinds of steel which offer most resistance to being magnetized—which require the' greatest amount of "coercion" to tear their fluids asunder—are the very ones which offer the greatest resistance to the reunion of the fluids after they have been once separated. Such kinds of steel are most suited to the formation of permanent magnets. It is manifest, indeed, that without coercive force a permanent magnet would not be at all possible.

Probably long before this you will have dipped the end of your magnet among iron filings, and observed how they cling to it; or into a nail-box, and found how it drags the nails after it. I know very well that if you are not the slaves of routine you will have by this time done many things that I have not told you to do, and thus multiplied your experience beyond what I have indicated. You are almost sure to have caused a bit of iron to hang from the end of your magnet, and you have probably succeeded in causing a second bit to attach itself to the first, a third to the second ; until finally the force has become too feeble to bear the weight of more. If you have operated with nails, you may have observed that the points and edges hold together with the greatest tenacity; and that a bit of iron clings more firmly to the corner of your magnet than to one of its flat surfaces. In short, you will in all likelihood have enriched your experience in many ways without any special direction from me.

Well, the magnet attracts the nail, and the nail attracts a second one. This proves that the nail in contact with the magnet has had the magnetic quality developed in it by that contact. If it be withdrawn from the magnet its power to attract its fellow nail ceases. Contact, however, is not necessary. A sheet of glass or paper, or a space of air, may exist between the magnet and the nail; the latter is still magnetized, though not so forcibly as when in actual contact. The nail thus presented to the magnet is itself a temporary magnet. That end which is turned toward the magnetic pole has the opposite magnetism of the pole which excites it; the end most remote from the pole has the same magnetism as the pole itself, and between the two poles the nail, like the magnet, possesses a magnetic equator.

Conversant as you now are with the theory of magnetic fluids, you have already, I doubt not, anticipated me in imagining the exact condition of an iron nail under the influence of the magnet. You picture the iron as possessing the neutral fluid in abundance; you picture the magnetic pole, when brought near, decomposing the fluid; repelling the fluid of a like kind with itself, and attracting the unlike fluid; thus exciting in the parts of the iron nearest to itself the opposite polarity. But the iron is incapable of becoming a permanent magnet. It only shows its virtue as long as the magnet acts upon it. What, then, does the iron lack which the steel possesses? It lacks coercive force. Its fluids are separated with ease; but, once the separating cause is removed, they flow together again, and neutrality is restored. Imagination must be quite nimble in picturing these changesable to see the fluids dividing and reuniting, according as the magnet is brought near or withdrawn. Fixing a definite pole in your mind, you must picture the precise arrangement of the two fluids with reference to this pole, and be able to arouse similar pictures in the minds of your pupils. You will cause them to place magnets and iron in various positions, and describe the exact magnetic state of the iron in each particular case. The mere facts of magnetism will have their interest immensely augmented by an acquaintance with the principles whereon the facts depend. Still, while you use this theory of magnetic fluids to track out the phenomena and link them together, you will not forget to tell your pupils that it is to be regarded as a symbol merely—a symbol, moreover, which is incompetent to cover all the facts, but which does good practical service while we are waiting for the actual truth.

The state of excitement into which iron is thrown by the influence of a magnet is sometimes called "magnetization by influence." More commonly, however, the magnetism is said to be "induced" in the iron, and hence this mode of magnetizing is called "magnetic induction." Now, there is nothing theoretically perfect in Nature: there is no iron so soft as not to possess a certain amount of coercive force, and no steel so hard as not to be capable, in some degree, of magnetic induction. The quality of steel is in some measure possessed by iron, and the quality of iron is shared in some degree by steel. It is in virtue of this latter fact that the unmagnetized darning-needle was attracted in your first experiment; and from this you may at once deduce the consequence that, after the steel has been magnetized, the repulsive action of a magnet must be always less than its attractive action. For the repulsion is opposed by the inductive action of the magnet on the steel, while the attraction is assisted by the same inductive action. Make this clear to your minds, and verify it by your experiments. In some cases you can actually make the attraction due to the temporary magnetism overbalance the repulsion due to the permanent magnetism, and thus cause two poles of the same kind apparently to attract each other. When, however, good hard magnets act on each other from a sufficient distance, the inductive action practically vanishes, and the repulsion of like poles is sensibly equal to the attraction of unlike ones.

I dwell thus long on elementary principles, because they are of the first importance, and it is the temptation of this age of unhealthy cramming to neglect them. Now follow me a little further. In examining the distribution of magnetism in your strip of steel you raised the needle slowly from bottom to top, and found what we -called a neutral point at the centre. Now, does the magnet really exert no influence on the pole presented to its centre? Let us see.

Let s N, Fig. 11, bc our magnet, and let n represent a particle of north magnetism, placed exactly opposite the middle of the magnet. Of course this is an imaginary case, as you can never in reality thus detach your north magnetism from its neighbor. But, supposing us to have done so, what would be the action of the two poles of the magnet on n? Your reply will, of course, be that the pole s attracts n while the pole N repels it. Let the magnitude and direction of the attraction be expressed by the line n m, and the magnitude and direction of the repulsion by the line n o. Now, the particle n being equally distant from s and N, the line n o, expressing the repulsion, will be equal to m n, which expresses the attraction. Acted upon by two such forces, the particle n must evidently move in the direction n p, exactly mid-way between m n and n o. Hence you see that, although there is no tendency of the particle n to move toward the magnetic equator, there is a tendency on its part to move parallel to the magnet. If, instead of a particle of north magnetism, we placed a particle of south magnetism opposite to the magnetic equator, it would evidently be urged along the line n q; and if, instead of two separate particles of magnetism, we place a little magnetic needle, containing both north and south magnetism, opposite the magnetic equator, its south pole being urged along n q, , and its north along n p, the little needle will be compelled to set itself parallel to the magnet s N. Make the experiment, and satisfy yourselves that this is a true deduction.

Substitute for your magnetic needle a bit of iron wire, devoid of permanent magnetism, and it will set itself exactly as the needle does. Acted upon by the magnet, the wire, as you know, becomes a magnet and behaves as such ; it will turn its north pole toward p, and south pole toward q, just like the needle.

But supposing you shift the position of your particle of north magnetism, and bring it nearer to one end of your magnet than to the other; the forces acting on the particle are no longer equal; the nearest pole of the magnet will act more powerfully on the particle than the more distant one. Let s N, Fig. 12, be the magnet, and n the particle of north magnetism, in its new position. It is repelled by N, and attracted by s. Let the repulsion be represented in magnitude and direction by the line n o, and the attraction by the shorter line n m. The resultant of these two forces will be found by completing the parallelogram m n o p, and drawing its diagonal n p. Along n p, then, a particle of north magnetism would be urged by the simultaneous action of s and N. Substituting a particle of south magnetism for n, the same reasoning would lead to the conclusion that the particle would be urged along n q. If we place at n a short magnetic needle, its north pole will be urged along n p, its south pole along n q, the only position possible to the needle, thus acted on, being along the line p q, which is no longer parallel to the magnet. Verify this deduction by actual experiment.

In this way we might go round the entire magnet; and, considering its two poles as two centres from which the force emanates, we could, in accordance with ordinary mechanical principles, assign a definite direction to the magnetic needle at every particular place. And substituting, as before, a bit of iron wire for the magnetic needle, the positions of both will be the same.

Now, I think, without further preface, you will be able to comprehend for yourselves, and explain to others, one of the most interesting effects in the whole domain of magnetism. Iron filings you know are particles of iron, irregular in shape, being longer in some directions than in others. For the present experiment, moreover, instead of the iron filings, very small scraps of thin iron wire might be employed. I place a sheet of paper over the magnet; it is all the better if the paper be stretched on a wooden frame, as this enables us to keep it quite level. I scatter the filings, or the scraps of wire, from a sieve upon the paper, and tap the latter gently, so as to liberate the particles for a moment from its friction. The magnet acts on the filings through the paper, and see how it arranges them! They embrace the magnet in a series of beautiful curves, which are technically called "magnetic curves," or "lines of magnetic force." Does the meaning of these lines yet flash upon you? Set your magnetic needle, or your suspended bit of wire, at any point of one of the curves, and you will find the direction of the needle, or of the wire, to be exactly that of the particle of iron, or of the magnetic curve, at that point. Go round and round the magnet; the direction of your needle always coincides with the direction of the curve on which it is placed. These, then, are the lines along which a particle of south magnetism, if you could detach it, would move to the north pole, and a bit of north magnetism to the south pole. They are the lines along which the decomposition of the neutral fluid takes place. In the case of the magnetic needle, one of its poles being urged in one direction, and the other pole in the opposite direction, the needle must necessarily set itself as a tangent to the curve.

I will not seek to simplify this subject further. If there be anything obscure or confused or incomplete in my statement, you ought now, by patient thought, to be able to clear away the obscurity, to reduce the confusion to order, and to supply what is needed to render the explanation complete. Do not quit the subject until you thoroughly understand it; and if you are then able to look with your mind's eye at the play of forces around a magnet, and see distinctly the operation of those forces in the production of the magnetic curves, the time which we have spent together will not have been spent in vain.

In this thorough manner we must master our materials, reason upon them, and, by determined study, attain to clearness of conception. Facts thus dealt with exercise an expansive force upon the intellect--they widen the mind to generalization. We soon recognize a brother-hood between the larger phenomena of Nature and the minute effects which we have observed in our private chambers. Why, we inquire, does the magnetic needle set north and south? Evidently it is compelled to do so by the earth; the great globe which we inherit is itself a magnet.

Let us learn a little more about it. By means of a bit of wax, or otherwise, attach the end of your silk fibre to the middle point of your magnetic needle; the needle will thus be uninterfered with by the paper loop, and will enjoy to some extent a power of "dipping" its point, or its eye, below the horizon. Lay your bar-magnet on a table, and hold the needle over the equator of the magnet. The needle sets horizontal. Move it toward the north end of the magnet; the south end of the needle dips, the dip augmenting as you approach the north pole, over which the needle, if free to move, will set itself exactly vertical. Move it back to the centre, it resumes its horizontality; pass it on toward the south pole, its north end now dips, and directly over the south pole the needle becomes vertical, its north end being now turned down-ward. Thus we learn that on the one side of the magnetic equator the north end of the needle dips; on the other side the south end dips, the dip varying from nothing to 90°. If we go to the equatorial regions of the earth with a suitably suspended needle we shall find there the position of the needle horizontal. If we sail north one end of the needle dips; if we sail south the opposite end dips; and over the north or south terrestrial magnetic pole the needle sets vertical. The south magnetic pole has not yet been found, but Sir James Ross discovered the north magnetic pole on June 1, 1831. In this manner we establish a complete parallelism between the action of the earth and that of an ordinary magnet.

The terrestrial magnetic poles do not coincide with the geographical ones; nor does the earth's magnetic equator quite coincide with the geographical equator. The direction of the magnetic needle in London, which is called the magnetic meridian, encloses an angle of 240 with the astronomical meridian, this angle being called the Declination of the needle for London. The north pole of the needle now lies to the west of the true meridian; the declination is westerly. In the year 1660, however, the declination was nothing, while before that time it was easterly. All this proves that the earth's magnetic constituents are gradually changing their distribution. This change is very slow: it is therefore called the secular change, and the observation of it has not yet extended over a sufficient period to enable us to guess, even approximately, at its laws.

Having thus discovered, to some extent, the secret of the earth's magnetic power, we can turn it to account. In the line of "dip" I hold a poker formed of good soft iron. The earth, acting as a magnet, is at this moment constraining the two fluids of the poker to separate, making the lower end of the poker a north pole, and the upper end a south pole. Mark the experiment: When the knob is uppermost, it attracts the north end of 'a magnetic needle ; when undermost it attracts the south end of a magnetic needle. With such a poker repeat this experiment and satisfy yourselves that the fluids shift their position according to the manner in which the poker is presented to the earth. It has already been stated that the softest iron possesses a certain amount of coercive force. The earth, at this moment, finds in this force an antagonist which opposes the decomposition of the neutral fluid.

The component fluids may be figured as meeting an amount of friction, or possessing an amount of adhesion, which prevents them from gliding over the molecules of the poker. Can we assist the earth in this case? If we wish to remove the residue of a powder from the interior surface of a glass to which the powder clings, we invert the glass, tap it, loosen the hold of the powder, and thus enable the force of gravity to pull it down. So also by tapping the end of the poker we loosen the adhesion of the magnetic fluids to the molecules and enable the earth to pull them apart. But what is the consequence? The portion of fluid which has been thus forcibly dragged over the molecules refuses to return when the poker has been removed from the line of dip; the iron, as you see, has become a permanent magnet. By reversing its position and tapping it again we reverse its magnetism. A thoughtful and competent teacher will know how to place these remarkable facts before his pupils in a manner which will excite their interest. By the use of sensible images, more or less gross, he will first give those whom he teaches definite conceptions, purifying these conceptions afterward, as the minds of his pupils become more capable of abstraction. By thus giving them a distinct substratum for their reasonings, he will confer upon his pupils a profit and a joy which the mere exhibition of facts without principles, or the appeal to the bodily senses and the power of memory alone, could never inspire.

"It is well known that a voltaic current exerts an attractive force upon a second current, flowing in the same direction ; and that when the directions are opposed to each other the force exerted is a repulsive one. By coiling wires into spirals, Ampere was enabled to make them produce all the phenomena of attraction and repulsion exhibited by magnets, and from this it was but a step. to his celebrated theory of molecular currents. He supposed the molecules of a magnetic body to be surrounded by such currents, which, however, in the natural state of the body mutually neutralized each other, on account of their confused grouping. The act of magnetization he supposed to consist in setting these molecular currents parallel to each other; and, starting from this principle, he reduced all the phenomena of magnetism to the mutual action of electric currents.

"If we reflect upon the experiments recorded in the foregoing pages from first to last, we can hardly fail to be convinced that diamagnetic bodies operated on by magnetic forces possess a polarity `the same in kind as, but the reverse in direction of, that acquired by magnetic bodies.' But if this be the case, how are we to conceive the physical mechanism of this polarity? According to Coulomb's and Poisson's theory, the act of magnetization consists in the decomposition of a neutral magnetic fluid; the north pole of a magnet, for ex-ample, possesses an attraction for the south fluid of a piece of soft iron submitted to its influence, draws the said fluid toward it, and with it the material particles with which the fluid is associated. To account for diamagnetic phenomena this theory seems to fail altogether; according to it, indeed, the oft-used phrase, `a north pole exciting a north pole, and a south pole a south pole,' involves a contradiction. For if the north fluid be supposed to be attracted toward the influencing north pole, it is absurd to suppose that its presence there could produce repulsion. The theory of Ampere is equally at a loss to explain diamagnetic action; for if we suppose the particles of bismuth surrounded by molecular currents, then, according to all that is known of eleetro-dynamic laws, these currents would set themselves parallel to, and in the same direction as, those of the magnet, and hence attraction, and not repulsion, would be the result. The fact, however, of this not being the case, proves that these molecular currents are not the mechanism by which diamagnetic induction is effected. The consciousness of this, I doubt not, drove M. Weber to the assumption that the phenomena of diamagnetism are produced by molecular currents, not directed, but actually excited in the bismuth by the magnet. Such induced currents would, according to known laws, have a direction opposed to those of the inducing magnet, and hence would produce the phenomena of repulsion. To carry out the assumption here made, M. Weber is obliged to suppose that the molecules of diamagnetic bodies are surrounded by channels, in which the induced molecular currents, once excited, continue to flow without resistance."

Home | More Articles | Email: