Amazing articles on just about every subject...


Summary And Conclusion Of Radiation

( Originally Published 1905 )



Let us now cast a momentary glance over the ground-that we have left behind. The general nature of light and heat was first briefly described: the compounding of mat-ter from elementary atoms, and the influence of the act of combination on radiation and absorption, were considered and experimentally illustrated. Through the transparent elementary gases radiant heat was found to pass as through a vacuum, while many of the compound gases presented almost impassable obstacles to the calorific waves. This deportment of the simple gases directed our attention to other elementary bodies, the examination of which led to the discovery that the element iodine, dissolved in bisulphide of carbon, possesses the power of detaching, with extraordinary sharpness, the light of the spectrum from its heat, intercepting all luminous rays up to the extreme red, and permitting the calorific rays beyond the red to pass freely through it. This substance was then employed to filter the beams of the electric light, and to form foci of invisible rays so intense as to produce almost all the effects obtainable in an ordinary fire. Combustible bodies were burned, and refractory ones were raised to a white heat, by the concentrated invisible rays. Thus, by exalting their refrangibility, the invisible rays of the electric light were rendered visible, and all the colors of the solar spectrum were extracted from utter darkness. The extreme richness of the electric light in invisible rays of low refrangibility was demonstrated, one-eighth only of its radiation consisting of luminous rays. The deadness of the optic nerve to those invisible rays was proved, and experiments were then added to show that the bright and the dark rays of a solid body, raised gradually to incandescence, are strengthened together; intense dark heat being an invariable accompaniment of intense white heat. A sun could not be formed, or a meteorite rendered luminous, on any other condition. The light-giving rays constituting. only a small fraction of the total radiation, their unspeakable importance to us is due to the fact that their periods are attuned to the special requirements of the eye.

Among the vapors of volatile liquids vast differences were also found to exist, as regards their powers of absorption. We followed various molecules from a state of liquid to a state of gas, and found, in both states of aggregation, the power of the individual molecules equally asserted. The position of a vapor as an absorber of radiant heat was shown to be determined by that of the liquid from which it is derived. Reversing our conceptions, and regarding the molecules of gases and vapors not as the recipients, but as the originators of wave-motion; not as absorbers, but as radiators; it was proved that the powers of absorption and radiation went hand in hand, the self-same chemical act which rendered a body competent to intercept the waves of ether rendering it competent, in the same degree, to generate them. Perfumes were next subjected to examination, and, notwithstanding their extraordinary tenuity, they were found vastly superior, in point of absorptive power, to the body of the air in which they were diffused. We were led thus slowly up to the examination of the most widely diffused and most important of all vapors—the aqueous vapor of our atmosphere, and we found in it a potent absorber of the purely calorific rays. The power of this substance to influence climate, and its general influence on the temperature of the earth, were then briefly dwelt upon. A cobweb spread above a blossom is sufficient to protect it from nightly chill; and thus the aqueous vapor of our air, attenuated as it is, checks the drain of terrestrial heat, and saves the surface of our planet from the refrigeration which would assuredly accrue were no such substance interposed between it and the voids of space. We considered the influence of vibrating period, and molecular form, on absorption and radiation, and finally deduced, from its action upon radiant heat, the exact amount of carbonic acid expired by the human lungs.

Thus, in brief outline, were placed before you some of the results of recent inquiries in the domain of Radiation, and my aim throughout has been to raise in your minds distinct physical images of the various processes involved in our researches. It is thought by some that natural science has a deadening influence on the imagination, and a doubt might fairly be raised as to the value of any study which would necessarily have this effect. But the experience of the last hour must, I think, have convinced you that the study of natural science goes hand in hand with the culture of the imagination. Throughout the greater part of this discourse we have been sustained by this faculty. We have been picturing atoms, and molecules, and vibrations, and waves, which eye has never seen nor ear heard, and which can only be discerned by the exercise of imagination. This, in fact, is the faculty which enables us to transcend the boundaries of sense, and connect the phenomena of our visible world with those of an invisible one. Without imagination we never could have risen to the conceptions which have occupied us here today; and in proportion to your power of exercising this faculty aright, and of associating definite mental images with the terms employed, will be the pleasure and the profit which you will derive from this lecture. The outward facts of nature are insufficient to satisfy the mind. We cannot be content with knowing that the light and heat of the sun illuminate and warm the world. We are led irresistibly to inquire, "What is light, and what is heat?" and this question leads us at once out of the region of sense into that of imagination.'

Thus pondering, and questioning, and striving to supplement that which is felt and seen, but which is incomplete, by something unfelt and unseen which is necessary to its completeness, men of genius have in part discerned, not only the nature of light and heat, but also, through them, the general relationship of natural phenomena. The working power of Nature consists of actual or potential motion, of which all its phenomena are but special forms. This motion manifests itself in tangible and in intangible matter, being incessantly transferred from one to the other, and incessantly transformed by the change. It is as real in the waves of the ether as in the waves of the sea; the latter—derived as they are from winds, which in their turn are derived from the sun—are, indeed, nothing more than the heaped-up motion of the ether waves. It is the calorific waves emitted by the sun which heat our air, produce our winds, and hence agitate our ocean. And whether they break in foam upon the shore, or rub silently against the ocean's bed, or subside by the mutual friction of their own parts, the sea waves, which cannot subside without producing heat, finally resolve themselves into waves of ether, thus regenerating the motion from which their temporary existence was derived. This connection is typical. Nature is not an aggregate of independent parts, but an organic whole. If you open a piano and sing into it, a certain string will respond. Change the pitch of your voice; the first string ceases to vibrate, but another re-plies. Change again the pitch; the first two strings are silent, while another resounds. Thus is sentient man acted on by Nature, the optic, the auditory, and other nerves of the human body being so many strings differently tuned, and responsive to different forms of the universal power.



Home | More Articles | Email: info@oldandsold.com